Htri Design Manual Pdf 21
LINK --->>> https://ssurll.com/2tghBr
The Siemens HTRI-D Interface Module (Dual) is design to provide the means of interface direct shorting devices to the panel loop circuit. The HTRI-series modules provide the most advance method of address program and supervision on the market combine with a panel.
In addition, compatible with the same FireFinder XLS and FS-250 circuits with all intelligent H-Series detectors. The HMS Series is addressable manual stations or any other addressable intelligent modules. Addressable Interface Models HTRI-S, HTRI-D, and HTRI-R mount directly into a (user supplied) double gang or 4-inch switch box. A red LED will blink to indicate an off-normal input switch position and/or an internal relay transfer.
Shell and Tube Heat Exchangers are one of the most popular types of exchanger due to the flexibility the designer has to allow for a wide range of pressures and temperatures. There are two main categories of Shell and Tube exchanger:
The popularity of shell and tube exchangers has resulted in a standard nomenclature being developed for their designation and use by the Tubular Exchanger Manufactures Association (TEMA). This nomenclature is defined in terms letters and diagrams. The first letter describes the front header type, the second letter the shell type and the third letter the rear header type. Figure 2 shows examples of a BEM, CFU, and AES exchangers while Figure 3 illustrates the full TEMA nomenclature.
In this type of exchanger the tubesheet at the Rear Header end is not welded to the shell but allowed to move or float. The tubesheet at the Front Header (tube side fluid inlet end) is of a larger diameter than the shell and is sealed in a similar manner to that used in the fixed tubesheet design. The tubesheet at the rear header end of the shell is of slightly smaller diameter than the shell, allowing the bundle to be pulled through the shell. The use of a floating head means that thermal expansion can be allowed for and the tube bundle can be removed for cleaning. There are several rear header types that can be used but the S-Type Rear Head is the most popular. A floating head exchanger is suitable for the rigorous duties associated with high temperatures and pressures but is more expensive (typically of order of 25% for carbon steel construction) than the equivalent fixed tubesheet exchanger.
Strictly speaking this is not a TEMA designated type but is generally recognized. It can be used as a front or rear header and is used when the exchanger is to be used in a pipe line. It is cheaper than other types of headers as it reduces piping costs. It is mainly used with single tube pass units although with suitable partitioning any odd number of passes can be allowed.
This is an outside packed floating rear header. It is, in theory, a low cost floating head design which allows access to the inside of the tubes for cleaning and also allows the bundle to be removed for cleaning. The main problems with this type of header are:
This is the cheapest of all removable bundle designs, but is generally slightly more expensive than a fixed tubesheet design at low pressures. However, it permits unlimited thermal expansion, allows the bundle to be removed to clean the outside of the tubes, has the tightest bundle to shell clearances and is the simplest design. A disadvantage of the U-tube design is that it cannot normally have pure counterflow unless an F-Type Shell is used. Also, U-tube designs are limited to even numbers of tube passes.
This is a packed floating tubesheet with lantern ring. It is the cheapest of the floating head designs, allows for unlimited thermal expansion and allows the tube bundle to be removed for cleaning. The main problems with this type of head are:
These are normally wire wound inserts or twisted tapes. They are normally used with medium to high viscosity fluids to improve heat transfer by increasing turbulence. There is also some evidence that they reduce fouling. In order to use these most effectively the exchanger should be designed for their use. This usually entails increasing the shell diameter, reducing the tube length and the number of tubeside passes in order to allow for the increased pressure loss characteristics of the devices.
In many cases the only way of ensuring optimum selection is to do a full design based on several alternative geometries. In the first instance, however, several important decisions have to be made concerning:
If neither of the above are applicable, the allocation of the fluids should be decided only after running two alternative designs and selecting the cheapest (this is time consuming if hand calculations are used but programs such as TASC from the Heat Transfer and Fluid Flow Service (HTFS) make this a trivial task).
G-type shells and H shells are normally specified only for horizontal thermosyphon reboilers. J shells and X-type shells should be selected if the allowable DP cannot be accommodated in a reasonable E-type design. For services requiring multiple shells with removable bundles, F-type shells can offer significant savings and should always be considered provided they are not prohibited by customer specifications
For shellside nozzles the ρv2 should not be greater than about 9000 in kg/ms2. For tubeside nozzles the maximum ρv2 should not exceed 2230 kg/ms2 for noncorrosive, nonabrasive single phase fluids and 740 kg/ms2 for other fluids. Impingement protection is always required for gases which are corrosive or abrasive, saturated vapors and two phases mixtures. Shell or bundle entrance or exit areas should be designed such that a ρv2 of 5950 kg/ms2 is not exceeded.
The thermal design of a shell and tube exchanger is an iterative process which is normally carried out using computer programs from organizations such as the Heat transfer and Fluid Flow Service (HTFS) or Heat Transfer Research Incorporated (HTRI). However, it is important that the engineer understands the logic behind the calculation. In order to calculate the heat transfer coefficients and pressure drops, initial decisions must be made on the sides the fluids are allocated, the front and rear header type, shell type, baffle type, tube diameter and tube layout. The tube length, shell diameter, baffle pitch and number of tube passes are also selected and these are normally the main items that are altered during each iteration in order to maximize the overall heat transfer within specified allowable pressure drops. 153554b96e
https://www.rebeccasaracoffey.com/forum/design-forum/descargarcolecciondekaraokepioneercompleta
https://www.wontvplus.com/forum/general-discussions/spyhunter-5-full-patch-hot